Skip to main content

Intrinsic Magnetism and Collective Magnetic Properties of Size-Selected Nanoparticles

  • Chapter
  • First Online:
Nanoparticles from the Gasphase

Abstract

Using size-selected spherical FePt nanoparticles and cubic Fe/Fe-oxide nanoparticles as examples, we discuss the recent progress in the determination of static and dynamic properties of nanomagnets. Synchroton radiation-based characterisation techniques in combination with detailed structural, chemical and morphological investigations by transmission and scanning electron microscopy allow the quantitative correlation between element-specific magnetic response and spin structure on the one hand and shape, crystal and electronic structure of the particles on the other hand. Examples of measurements of element-specific hysteresis loops of single 18 nm sized nanocubes are discussed. Magnetic anisotropy of superparamagnetic ensembles and their dynamic magnetic response are investigated by ferromagnetic resonance as a function of temperature at different microwave frequencies. Such investigations allow the determination of the magnetic relaxation and the extraction of the average magnetic anisotropy energy density of the individual particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.L. Dorman, D. Fiorani, E. Tronc, Magnetic relaxation in fine-particle systems. Adv. Chem. Phys. 98, 283 (1997)

    Article  Google Scholar 

  2. C.K. Kim, D, Kan, T, Veres, F. Normadin, J.K. Liao, H.H. Kim, S.-H. Lee, M. Zahn, M. Muhammed, Monodispersed FePt nanoparticles for biomedical applications. J. Appl. Phys. 97, 10Q918 (2005).

    Google Scholar 

  3. O.A. Ivanov, L.V. Solina, V.A. Demshina, L.M. Magat, Determination of the anisotropy constant and saturation magnetization, and magnetic properties of powders of an iron-platinum alloy. Phys. Met. Metall. 35, 81 (1973)

    Google Scholar 

  4. M.R. Visokay, R. Sinclair, Direct formation of ordered CoPt and FePt compound thin films by sputtering. Appl. Phys. Lett. 66, 1692 (1995)

    Article  ADS  Google Scholar 

  5. J.-U. Thiele, L. Folks, M.F. Toney, D. Weller, Perpendicular magnetic anisotropy and magnetic domain structure in sputtered epitaxial FePt (001) L1\(_0\) films. J. Appl. Phys. 84, 5686 (1998)

    Article  ADS  Google Scholar 

  6. T. Shima, K. Takanashi, Y.K. Takahashi, K. Hono, Coercivity exceeding 100 kOe in epitaxially grown FePt sputtered films. Appl. Phys. Lett. 80, 2571 (2004)

    Article  ADS  Google Scholar 

  7. F. Dumestre, B. Chaudret, C. Amiens, P. Renaud, P. Fejes, Superlattices of iron nanocubes from Fe[N(SiME\(_3\))\(_2\)]\(_2\). Science 303, 821 (2004)

    Article  ADS  Google Scholar 

  8. O. Margeat, F. Dumestre, C. Amiens, B. Chaudret, P. Lecante, M. Respaud, Synthesis of iron nanoparticles: size effects, shape control and organisation. Prog. Solid. State Chem. 33, 71 (2005)

    Article  Google Scholar 

  9. C. Frandsen et al., Interparticle interactions in composites of nanoparticles of ferrimagnetic \(\gamma \)-Fe\(_2\)O\(_3\) and antiferromagnetic (CoO, NiO) materials. Phys. Rev. B 70, 134416 (2004)

    Article  ADS  Google Scholar 

  10. D.V. Berkov, Density of energy barriers in fine magnetic particle systems. IEEE Trans. Magn. 38, 2637–2639 (2002)

    Article  ADS  Google Scholar 

  11. C. Thirion, W. Wernsdorfer, D. Mailly, Switching of magnetization by nonlinear resonance studied in single nanoparticles. Nat. Mater. 2, 524–527 (2003)

    Article  ADS  Google Scholar 

  12. I. Rod, O. Kazakova, D.C. Cox, M. Spasova, M. Farle, The route to single magnetic particle detection: a carbon nanotube decorated with a finite number of nanocubes. Nanotechnology 20, 335301 (2009)

    Article  Google Scholar 

  13. L.T. Kuhn et al., Magnetisation of isolated single crystalline Fe-nanoparticles measured by a ballistic Hall micro-magnetometer. Europ. Phys. J. D 10, 259–263 (2000)

    Article  ADS  Google Scholar 

  14. T. Uhlig, J. Zweck, Recording of single-particle hysteresis loops with differential phase contrast microscopy. Ultramicroscopy 99, 137–142 (2004)

    Article  Google Scholar 

  15. E. Snoeck et al., Magnetic configurations of 30 nm iron nanocubes studied by electron holography. Nano Lett. 8, 4293–4298 (2008)

    Article  ADS  Google Scholar 

  16. P. Schattschneider et al., Detection of magnetic circular dichroism on the two-nanometer scale. Phys. Rev. B 78, 104413 (2008)

    Article  ADS  Google Scholar 

  17. P. Schattschneider et al., Detection of magnetic circular dichroism using a transmission electron microscope. Nature 441, 486–488 (2006)

    Article  ADS  Google Scholar 

  18. H.A. Dürr et al., A closer look into magnetism: opportunities with synchrotron radiation. IEEE Trans. Magn. 45, 15–57 (2009)

    Article  ADS  Google Scholar 

  19. S. Eisebitt et al., Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432, 885–888 (2004)

    Article  ADS  Google Scholar 

  20. E. Amaladass, B. Ludescher, G. Schütz, T. Tyliszczak, T. Eimüller, Size dependence in the magnetization reversal of Fe/Gd multilayers on self-assembled arrays of nanospheres. Appl. Phys. Lett. 91, 172514 (2007)

    Article  ADS  Google Scholar 

  21. P. Fischer et al., Element-specific imaging of magnetic domains at 25 nm spatial resolution using soft x-ray microscopy. Rev. Sci. Instrum. 72, 2322–2324 (2001)

    Article  ADS  Google Scholar 

  22. M.-Y. Im et al., Direct real-space observation of stochastic behavior in domain nucleation process on a nanoscale. Adv. Mater. 20, 1750–1754 (2008)

    Article  Google Scholar 

  23. D.Y. Kim, Magnetic soft x-ray microscopy at 15 nm resolution probing nanoscale local magnetic hysteresis. J. Appl. Phys. 99, 08H303 (2006).

    Google Scholar 

  24. A. Fraile Rodríguez, F. Nolting, J. Bansmann, A. Kleibert, L.J. Heyderman, X-ray imaging and spectroscopy of individual cobalt nanoparticles using photoemission electron microscopy. J. Magn. Magn. Mater. 316, 426–428 (2007)

    Article  ADS  Google Scholar 

  25. J. Bansmann et al., Magnetism of 3d transition metal nanoparticles on surfaces probed with synchrotron radiation–from ensembles towards individual objects. Phys. Stat. Sol. B 247, 1152–1160 (2010)

    Google Scholar 

  26. A. Fraile Rodríguez et al., Size-dependent spin structures in iron nanoparticles. Phys. Rev. Lett. 104, 127201 (2010)

    Article  ADS  Google Scholar 

  27. G. Cheng, J.D. Carter, T. Guo, Investigation of Co nanoparticles with EXAFS and XANES. Chem. Phys. Lett. 400, 122–127 (2002)

    Article  ADS  Google Scholar 

  28. J. Rockenberger, L. Trger, A. Kornowski, T. Vossmeyer, A. Eychmüller, J. Feldhaus, H.J. Weller, EXAFS studies on the size dependence of structural and dynamic properties of CdS nanoparticles. Phys. Chem. B 101, 2691–2701 (1997)

    Article  Google Scholar 

  29. M.A. Marcus, L.E. Brus, C. Murray, M.G. Bawendi, A. Prasad, A.P. Alivisatos, EXAFS studies of cadmium chalcogenide nanocrystals. Nanostruct. Mater. 1, 323–335 (1992)

    Article  Google Scholar 

  30. S. Davis, A. Chadwick, J.J. Wright, A combined EXAFS and diffraction study of pure and doped nanocrystalline tin oxide. Phys. Chem. B 101, 9901–9908 (1997)

    Article  Google Scholar 

  31. D. Zanchet, H. Tolentino, M.C. Alves, O.L. Alves, D. Ugarte, Inter-atomic distance contraction in thiol-passivated gold nanoparticles. Chem. Phys. Lett. 323, 167–172 (2000)

    Article  ADS  Google Scholar 

  32. M, Dubiel, J. Haug, H. Kruth, H. Hofmeister, W. Seifert, Temperature dependence of EXAFS cumulants of Ag nanoparticles in glass. J. Phys. Conf. Ser. 190, 012123-1–012123-6 (2009)

    Google Scholar 

  33. R.A. Andersen, K. Faegri, J.C. Green, A. Haaland, W.-P. Leung, K. Rypdal, Synthesis of bis[bis(trimethylsilyl)amido]iron(II). Structure and bonding in M[N(SiMe\(_3\))\(_2\)]\(_2\) (M = manganese, iron, cobalt): two-coordinate transition-metal amides. Inorg. Chem. 27, 1782–1786 (1988)

    Article  Google Scholar 

  34. A.V. Trunova, R. Meckenstock, I. Barsukov, C. Hassel, O. Margeat, M. Spasova, J. Lindner, M. Farle, Magnetic characterization of iron nanocubes. J. Appl. Phys. 104, 093904-1–093904-5 (2008)

    Google Scholar 

  35. K. Fauth, E. Goering, G. Schütz, L.T. Kuhn, Probing composition and interfacial interaction in oxide passivated core-shell iron nanoparticles by combining x-ray absorption and magnetic circular dichroism. J. Appl. Phys. 96, 399 (2004)

    Article  ADS  Google Scholar 

  36. A. Shavel, B. Rodríguez-González, M. Spasova, M. Farle, L.M. Liz-Marzán, Synthesis and characterization of iron/iron oxide core/shell nanocubes. Adv. Funct. Mat. 17, 3870–3876 (2007)

    Article  Google Scholar 

  37. S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000)

    Article  ADS  Google Scholar 

  38. R.M. Wang, O. Dmitrieva, M. Farle, G. Dumpich, H.Q. Ye, H. Poppa, R. Kilaas, C. Kisielowski, Layer resolved structural relaxation at the surface of magnetic FePt icosahedral nanoparticles. Phys. Rev. Lett. 100, 017205-1–017205-4 (2008)

    Google Scholar 

  39. C. Antoniak, M. Farle, Magnetism at the nanoscale: the case of FePt. Mod. Phys. Lett. B 21, 1111–1131 (2007)

    Article  ADS  Google Scholar 

  40. H.-G. Boyen, K. Fauth, B. Stahl, P. Ziemann, G. Kästle, F. Weigl, F. Banhart, M. Heßler, G. Schütz, N.S. Gajbhije, J. Ellrich, H. Hahn, M. Büttner, M.G. Garnier, P. Oelhafen, Electronic and magnetic properties of ligand-free FePt nanoparticles. Adv. Mater. 17, 574–578 (2005)

    Article  Google Scholar 

  41. U. Wiedwald, K. Fauth, M. Heßler, H.-G. Boyen, F. Weigl, M. Hilgendorff, M. Giersig, G. Schütz, P. Ziemann, M. Farle, From colloidal Co/CoO core/shell nanoparticles to arrays of metallic nanomagnets: surface modification and magnetic properties. Chem. Phys. Chem. 6, 2522–2526 (2005)

    Article  Google Scholar 

  42. C. Antoniak, A. Trunova, M. Spasova, M. Farle, H. Wende, F. Wilhelm, A. Rogalev, Lattice expansion in nonoxidized FePt nanoparticles: an x-ray absorption study. Phys. Rev. B 78, 041406(R)-1–041406(R)-4 (2008)

    Google Scholar 

  43. A.L. Ankudinov, B. Ravel, J.J. Rehr, S.D. Conradson, Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys. Rev. B 58, 7565–7576 (1998)

    Article  ADS  Google Scholar 

  44. S.I. Zabinsky, J.J. Rehr, A. Ankudinov, R.C. Albers, M.J. Eller, Multiple-scattering calculations of x-ray-absorption spectra. Phys. Rev. B 52, 2995–3009 (1995)

    Article  ADS  Google Scholar 

  45. C. Antoniak, M. Spasova, A. Trunova, K. Fauth, F. Wilhelm, A. Rogalev, J. Minár, H. Ebert, M. Farle, H. Wande, Inhomogeneous alloying in FePt nanoparticles as a reason for reduced magnetic moments. J. Phys. Cond. Mat. 21, 336002 (2009)

    Article  Google Scholar 

  46. C. Antoniak, A. Warland, M. Darbandi, M. Spasova, A. Trunova, K. Fauth, E.F. Aziz, M. Farle, H. Wende, X-ray absorption measurements on nanoparticles: self-assembled arrays and dispersions. J. Phys. D Appl. Phys. 43, 474007 (2010)

    Article  ADS  Google Scholar 

  47. A. Grossmann, J. Morlet, Decomposition of Hardy functions into square-integrable wavelets of constant shape. SIAM J. Math. Anal. 15, 723–736 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  48. X. Shao, L. Shao, G. Zhao, Extraction of x-ray absorption fine structure information from the experimental data using the wavelet transform. Analyt. Commun. 35, 135–137 (1998)

    Article  MathSciNet  Google Scholar 

  49. K. Yamaguchi, Y. Ito, T. Mukoyama, M. Takahashi, S.J. Emura, The regularization of the basic x-ray absorption spectrum fine structure equation via the wavelet-Galerkin method. Phys. B At. Mol. Opt. Phys. 32, 1393–1408 (1999)

    Article  ADS  Google Scholar 

  50. M. Muñoz, P. Argoul, F. Farges, Continuous Cauchy wavelet transform analyses of EXAFS spectra: a qualitative approach. Am. Mineralog. 88, 694–700 (2003)

    Google Scholar 

  51. H. Funke, H.C. Scheinost, M. Chukalina, Wavelet analysis of extended x-ray absorption fine strucure data. Phys. Rev. B 71, 094110 (2005)

    Article  ADS  Google Scholar 

  52. C. Antoniak, Extended x-ray absorption fine structure of bimetallic nanoparticles. Beilstein J. Nanotechol. 2, 237–251 (2011)

    Article  Google Scholar 

  53. B.T. Thole, P. Carra, F. Sette, G. van der Laan, X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 68, 1943–1946 (1992)

    Article  ADS  Google Scholar 

  54. P. Carra, B.T. Thole, M. Altarelli, X. Wang, X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett. 70, 694–697 (1993)

    Article  ADS  Google Scholar 

  55. C.T. Chen, Y.U. Idzerda, H.-J. Lin, N.V. Smith, G. Meigs, E. Chaban, G.H. Ho, E. Pellegrin, F. Sette, Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. Phys. Rev. Lett. 75, 152–155 (1995)

    Article  ADS  Google Scholar 

  56. C. Ederer, M. Komelj, Magnetism in systems with various dimensionalities: a comparison between Fe and Co. Phys. Rev. B 68, 052402-1–052402-4 (2003)

    Google Scholar 

  57. R. Nakajima, J. Stöhr, Y.U. Idzerda, Electron-yield saturation effects in L-edge x-ray magnetic circular dichroism spectra of Fe, Co. and Ni. Phys. Rev. B 59, 6421–6429 (1999)

    Article  ADS  Google Scholar 

  58. K. Fauth, How well does total electron yield measure x-ray absorption in nanoparticles? Appl. Phys. Lett. 85, 3271–3273 (2004)

    Article  ADS  Google Scholar 

  59. H. Ebert et al., The Munich SPR-KKR package, version 3.6; http://olymp.cup.unimuenchen.de/ak/ebert/SPRKKR; H. Ebert, Fully relativistic band structure calculations for magnetic solids formalism and application in electronic structure and physical properties of solids, ed. by H. Dreyssé, Lecture Notes in Physics, vol. 535, p. 191 (2000)

  60. C. Antoniak, J. Lindner, K. Fauth, J.-U. Thiele, J. Minár, S. Mankovsky, H. Ebert, H. Wende, M. Farle, Composition dependence of exchange stiffness in Fe\(_x\)Pt\(_{1-x}\) alloys. Phys. Rev. B 82, 064403-1–064403-6 (2010)

    Google Scholar 

  61. H. Landolt, R. Börnstein, Numerical data and Functional Relationships in Science and Technology, New Series III/19a, (Springer, Berlin, 1986) and references therein

    Google Scholar 

  62. C. Antoniak, J. Lindner, M. Spasova, D. Sudfeld, M. Acet, M. Farle, K. Fauth, U. Wiedwald, H.-G. Boyen, P. Ziemann, F. Wilhelm, A. Rogalev, S. Sun, Enhanced orbital magnetism in Fe\(_{50}\)Pt\(_{50}\) nanoparticles. Phys. Rev. Lett. 97, 117201 (2006)

    Article  ADS  Google Scholar 

  63. E. Goering, A. Fuss, W. Weber, J. Will, G. Schütz, Element specific x-ray magnetic circular dichroism magnetization curves using total electron yield. J. Appl. Phys. 88, 5920 (2000)

    Article  ADS  Google Scholar 

  64. M.P. Sharrock, Time dependence of switching fields in magnetic recording media. J. Appl. Phys. 76, 6413 (1994)

    Article  ADS  Google Scholar 

  65. O. Dmitrieva et al., Magnetic moment of Fe in oxide-free FePt nanoparticles. Phys. Rev. B 76, 064414-1–064414-7 (2007)

    Google Scholar 

  66. C. Antoniak et al., A guideline for atomistic design and understanding of ultrahard nanomagnets, Nature Commun. 2, 528 (2011)

    Google Scholar 

  67. M.E. Gruner, G. Rollmann, P. Entel, M. Farle, Multiply twinned morphologies of FePt and CoPt nanoparticles. Phys. Rev. Lett. 100, 087203-1–087203-4 (2008)

    Google Scholar 

  68. J.B. Staunton, S. Ostanin, S.S.A. Razee., B.L. Gyorffy, L. Szunyogh, B. Ginatempo, E. Bruno, Temperature dependent magnetic anisotropy in metallic magnets from an Ab initio electronic structure theory: L1\(_0\)-ordered FePt. Phys. Rev. Lett. 93, 257204-1–257204-4 (2004)

    Google Scholar 

  69. C. Antoniak, J. Lindner, M. Farle, Magnetic anisotropy and its temperature dependence in iron-rich Fe\(_x\)Pt\(_{1-x}\) nanoparticles. Europhys. Lett. 70, 250–256 (2005)

    Article  ADS  Google Scholar 

  70. O. Mryasov, U. Nowak, K.Y. Guslienko, R.W. Chantrell, Temperature-dependent properties of FePt: effective spin Hamiltonian model. Europhys. Lett. 69, 805–811 (2005)

    Article  ADS  Google Scholar 

  71. E. Stavitski, F.M.F. de Groot, The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. Micron 41, 687 (2010)

    Google Scholar 

  72. R.D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, 1981), p. 307

    Google Scholar 

  73. F.M.F. de Groot, A. Kotani, Core Level Spectroscopy of Solids (Taylor& Francis, New York, 2008)

    Book  Google Scholar 

  74. F.M.F. de Groot, X-ray absorption and dichroism of transition metals and their compounds. J. Electron Spectrosc. Relat. Phenom. 61, 529 (1994)

    Article  Google Scholar 

  75. P. Kuiper, B.G. Searle, L.-C. Duda, R.M. Wolf, P.J. van der Zaag, Fe L\(_{2,3}\) linear and circular magnetic dichroism of Fe\(_3\)O\(_4\). J. Electron Spectrosc. Relat. Phenom. 86, 107 (1997)

    Article  Google Scholar 

  76. T. Fujii, F.M.F. de Groot, G.A. Sawatzky, F.C. Voogt, T. Hibma, K. Okada, In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B 59, 3195–3202 (1999)

    Article  ADS  Google Scholar 

  77. W.E. Henry, M.J. Boem, Intradomain magnetic saturation and magnetic structure of y-Fe203. Phys. Rev. 101, 1253 (1956)

    Article  ADS  Google Scholar 

  78. F. Kronast, N. Friedenberger, K. Ollefs, S. Gliga, L. Tati-Bismaths, R. Thies, A. Ney, R. Weber, C. Hassel, F.M. Römer, A.V. Trunova, C. Wirtz, R. Hertel, H.A. Dürr, M. Farle, Element-specific magnetic hysteresis of individual 18 nm Fe nanocubes. Nano Lett 11, 1710–1715 (2011)

    Article  ADS  Google Scholar 

  79. Object oriented micromagnetic framework, http://www.math.nist.gov/oommf

  80. N. Friedenberger, C. Möller, C. Hassel, S. Stienen, F. Kronast, M. Farle, Single Nanoparticle Magnetism: Influence of morphology, to be published (2012)

    Google Scholar 

  81. N. Friedenberger, Ph.D. Thesis, Universität Duisburg-Essen, in preparation (2011)

    Google Scholar 

  82. W.H. Meiklejohn, C.P. Bean, New magnetic anisotropy. Phys. Rev. 102, 1413–1414 (1956)

    Google Scholar 

  83. J. Nogués et al., Exchange bias in nanostructures. Phys. Rep. 422, 65–117 (2005)

    Article  ADS  Google Scholar 

  84. X. Batlle, Magnetic nanoparticles with bilklike properties (invited). J. Appl. Phys 109, 07B524-1–07B524-6 (2011)

    Google Scholar 

  85. R. Fink, SMART: a planned ultrahigh-resolution spectromicroscope for Bessy II. J. Electr. Spectr. Rel. Phen. 84, 231 (1997)

    Article  Google Scholar 

  86. M. Farle, Ferromagnetic resonance of ultrathin metallic layers. Rep. Prog. Phys. 61, 755–826 (1998)

    Article  ADS  Google Scholar 

  87. A. Banholzer, R. Narkowicz, C. Hassel, R. Meckenstock, S. Stienen, O. Posth, D. Suter, M. Farle, J. Lindner, Visualization of spin dynamics in single nanosized magnetic elements. Nanotechnology 22, 295713 (2011)

    Article  Google Scholar 

  88. K. Baberschke, in Investigation of Ultrathin Ferromagnetic Films by Magnetic Resonance. Handbook of Magnetism and Advanced Magnetic Materials, vol. 3 (Wiley, New York, 2007), p. 1617 and references therein

    Google Scholar 

  89. J. Lindner, C. Hassel, A.V. Trunova, F.M. Römer, S. Stienen, I. Barsukov, Magnetism of single-crystalline Fe nanostructures. J. Nanosc. Nanotechn. 10, 6161 (2010)

    Article  Google Scholar 

  90. M. Mizuguchi, K. Takanashi, Ferromagnetic resonance of epitaxial Fe nanodots grown on MgO measured using coplanar waveguides. J. Phys. D Appl. Phys. 44, 064007 (2011)

    Article  ADS  Google Scholar 

  91. D, Bonneberg, H.A., Hempel, H.P.J. Wijn, Magnetic properties of 3d, 4d and 5d elements, alloay and compounds. in Landolt-Börnstein, New Series (Springer Berlin), vol. III/19a, ed. by K.-H. Hellwege, O. Madelung (1992), p. 178 and references therein

    Google Scholar 

  92. B.K. Kuanr, R.E. Camley, Z. Celinski, Relexation in epitaxial Fe films measured by ferromagnetic resonance. J. Appl. Phys. 95, 6610–6613 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank the HZB—BESSY II staff, in particular T. Kachel, R. Schulz, and H. Pfau for their kind support during beamtimes. For their great help in the measurements and technical support, F. Wilhelm, A. Rogalev, P. Voisin, and S. Feite (ESRF) are gratefully acknowledged. For nanoparticle synthesis we would like to thank S. Sun (Brown U.) and O. Margeat (U. de la Méditerranée Marseille), and J.-U. Thiele (Seagate) for preparation of the epitaxial films. For help with the SPR-KKR package J. Minár, M. Košuth, S. Mankovsky and H. Ebert (LMU Munich) are acknowledged. We thank all other collaborators and members of the SFB 445—a number too large to be mentioned here in particular—for their help and for fruitful discussions. This work was financially supported by the DFG (SFB445), EU (MRTN-CT-2004-005567), ESRF and BMBF (05 ES3XBA/5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Antoniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Antoniak, C. et al. (2012). Intrinsic Magnetism and Collective Magnetic Properties of Size-Selected Nanoparticles . In: Lorke, A., Winterer, M., Schmechel, R., Schulz, C. (eds) Nanoparticles from the Gasphase. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28546-2_11

Download citation

Publish with us

Policies and ethics